Abstract

In a vibrating screen machinery, two eccentric rotors (ERs) are actuated by swung and fixed motors. When the working efficiency of vibrating screens is the highest, the motion trajectory of the vibrating body is an ellipse. However, to implement elliptical trajectory, the ideal synchronization between the two ERs must be needed. Hence, the self-synchronous theory and synchronous control method for the vibrating screen machinery are explored. First, the mathematic model of the vibration system is deduced based on Lagrange equation; then, the synchronous condition and stability criterion are inferred from averaged small parameter method. In addition, the synchronization controllers, related to speed and phase of the ERs, are designed by with sliding mode control (SMC), and the master–slave control strategy is applied to design the control structure. Meanwhile, the stability performance of the controllers is demonstrated by Lyapunov theory and Hurwitz condition. Finally, computer simulations are implemented to validate the theoretical reliability of self-synchronization and synchronous control. The simulation results show that the system can be self-synchronized, but the ideal synchronization is difficult to achieve when the two ERs are self-synchronously rotated, which leads to non-ideal dynamic characteristics; nevertheless, the ideal synchronization can be implemented by the proposed synchronous control method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call