Abstract

This paper makes some great attempts to investigate the global exponential synchronization for arrays of coupled delayed Cohen‐Grossberg neural networks with both delayed coupling and one single delayed one. By resorting to free‐weighting matrix and Kronecker product techniques, two novel synchronization criteria via linear matrix inequalities (LMIs) are presented based on convex combination, in which these conditions are heavily dependent on the bounds of both the delay and its derivative. Owing to that the addressed system can include some famous neural network models as the special cases, the proposed methods can extend and improve those earlier reported ones. The efficiency and applicability of the presented conditions can be demonstrated by two numerical examples with simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.