Abstract
This paper is pertained with the synchronization problem for an array of coupled discrete-time complex networks with the presence of both time-varying delays and parameter uncertainties. The time-varying delays are considered both in the network couplings and dynamical nodes. By constructing suitable Lyapunov-Krasovskii functional and utilizing convex reciprocal lemma, new synchronization criteria for the complex networks are established in terms of linear matrix inequalities. Delay-partitioning technique is employed to incur less conservative results. All the results presented here not only depend upon lower and upper bounds of the time-delay, but also the number of delay partitions. Numerical simulations are rendered to exemplify the effectiveness and applicability of the proposed results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.