Abstract
This article reports the design of a novel finite-time robust nonlinear controller for the synchronization of two identical chaotic spacecraft. The proposed controller does not cancel nonlinear terms appearing in the chaotic spacecraft dynamics. Avoiding the cancelation of the nonlinear terms of the plant by the controller makes the closed-loop robust stable in the presence of uncertainties in the chaotic spacecraft parameters; this concept blooms base for the design of computationally efficient simple control law. The proposed finite-time robust nonlinear controller (1) synchronizes two nearly identical chaotic spacecraft in finite-time duration, (2) expedites the convergence of errors vector to zero without oscillation, and (3) eradicates the effects of external disturbances. Analysis based on the Lyapunov second theorem proves that the synchronization error converges fast and verifying the closed-loop’s robust global stability. The finite-time stability technique affirms the convergence of the synchronization error to zero in settling time. This research article also studies the effects of the exogenous disturbances and the controller parameter’s slowly smooth variations on the closed-loop performance. The controller parameter variation analysis sets the procedure for tuning the controller parameters. The computer-based simulation results validate the theoretical findings and provide a comparative performance analysis with the other recently proposed synchronization feedback controllers. This article uses Mathematica 12.0 version in the Microsoft 10 environment for all the simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.