Abstract

This paper is concerned with the synchronization control problem for a class of discrete time-delay complex dynamical networks under a dynamic event-triggered mechanism. For the efficiency of energy utilization, we make the first attempt to introduce a dynamic event-triggering strategy into the design of synchronization controllers for complex dynamical networks. A new discrete-time version of the dynamic event-triggering mechanism is proposed in terms of the absolute errors between control input updates. By constructing an appropriate Lyapunov functional, the dynamics of each network node combined with the introduced event-triggering mechanism are first analyzed, and a sufficient condition is then provided under which the synchronization error dynamics is exponentially ultimately bounded. Subsequently, a set of the desired synchronization controllers is designed by solving a matrix inequality. Finally, a simulation example is provided to verify the effectiveness of the proposed dynamic event-triggered synchronization control scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.