Abstract
In this paper, a variant of the well-known "voltage model" is applied to rotor position estimation for sensorless control of nonsalient permanent-magnet synchronous motors (PMSMs). Particular focus is on a low-speed operation. It is shown that a guaranteed synchronization from any initial rotor position and stable reversal of rotation can be accomplished, in both cases under load. Stable rotation reversal is accomplished by making the estimator insensitive to the stator resistance. It is also shown that the closed-loop speed dynamics are similar to those of a sensored drive for speeds above approximately 0.1 per unit, provided that the model stator inductance is underestimated. Experimental results support the theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.