Abstract
We study the dynamics of phase synchronization in growing populations of discrete phase oscillatory systems when the division process is coupled to the distribution of oscillator phases. Using mean-field theory, linear-stability analysis, and numerical simulations, we demonstrate that coupling between population growth and synchrony can lead to a wide range of dynamical behavior, including extinction of synchronized oscillations, the emergence of asynchronous states with unequal state (phase) distributions, bistability between oscillatory and asynchronous states or between two asynchronous states, a switch between continuous (supercritical) and discontinuous (subcritical) transitions, and modulation of the frequency of bulk oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.