Abstract

We discuss spatially distributed networks that exhibit a diffusive coupling structure, common in biomolecular networks and multi-agent systems. We first review conditions that guarantee spatial homogeneity of the solutions of these systems, referred to as “synchrony.” We next point to structural system properties that allow diffusion-driven instability - a phenomenon critical to pattern formation in biology - and show that an analogous instability mechanism exists in multi-agent systems. The results reviewed in the paper also demonstrate the role played by the Laplacian eigenvalues in determining the dynamical properties of diffusively coupled systems. We conclude with a discussion of how these eigenvalues can be assigned with a design of node and edge weights of a graph, and present a formation control example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.