Abstract

In this paper, we study the synchronization of a class of uncertain chaotic systems. Based on the sliding mode control and stability theory in fractional calculus, a new controller is designed to achieve synchronization. Examples are presented to illustrate the effectiveness of the proposed controller, like the synchronization between an integer-order system and a fraction-order system, the synchronization between two fractional-order hyperchaotic systems (FOHS) with nonidentical fractional orders, the antisynchronization between an integer-order system and a fraction-order system, the synchronization between two new nonautonomous systems. The simulation results are in good agreement with the theory analysis and it is noted that the proposed control method is of vital importance for practical system parameters are uncertain and imprecise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.