Abstract

In this paper, the global exponential synchronization of coupled connected neural networks with both discrete and distributed delays is investigated under mild condition, assuming neither the differentiability and strict monotonicity for the activation functions nor the diagonal for the inner coupling matrices. By employing a new Lyapunov–Krasovskii functional, applying the theory of Kronecker product of matrices and the linear matrix inequality (LMI) technique, several delay-dependent sufficient conditions in LMI form are obtained for global exponential synchronization of such systems. Moreover, the decay rate is estimated. The proposed LMI approach has the advantage of considering the difference of neuronal excitatory and inhibitory efforts, which is also computationally efficient as it can be solved numerically using efficient Matlab LMI toolbox, and no tuning of parameters is required. In addition, the proposed results generalize and improve the earlier publications. An example with simulation is given to show the effectiveness of the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call