Abstract

A model of chaos in high-power ferromagnetic resonance in coincidence regime, based on three-magnon interactions of the uniform mode with a group of pairs of parametric spin waves, is investigated numerically. The re- sults are interpreted from the point of view of chaotic synchronization theory. If all spin waves are identical, all of them are excited above the first-order Suhl instability threshold and in the chaotic regime their amplitudes show marginal synchronization, i.e. they differ only by a multiplicative factor, con- stant in time. If spin waves have slightly different instability thresholds, only one or few of them are excited. In the latter case, addition of weak thermal noise changes the results qualitatively. For low rf field amplitude, but above the threshold for chaos, still only few spin-wave pairs are excited above the thermal level. For higher rf field amplitude all spin waves in the group are excited, and their amplitudes are not synchronized. These results sug- gest that low correlation dimension of chaotic attractors, observed often in nonlinear ferromagnetic resonance, can be connected with chaotic synchronization among spin-wave amplitudes, in particular just above the threshold for chaos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.