Abstract

We present a scheme to generate synchronised THz and soft X-ray radiation pulses by using a free-electron laser oscillator driven by a high repetition rate (of order 10–100 MHz) energy recovery linac. The backward THz radiation in the oscillator cavity interacts with a successive electron bunch, thus producing few 105 soft/hard X-ray photons per shot (namely 1012–1013 photons/s) via Thomson/Compton back-scattering, synchronised with the mJ-class THz pulse within the temporal jitter of electron beams accelerated in the superconducting cavities of the linac (less than 100 fs). Detailed simulations have been performed in order to assess the capability of the scheme for typical wavelengths of interest, between 10 and 50 μm for the TeraHertz radiation and 0.5–3 nm for the X-rays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.