Abstract

This paper addresses synchronisation problem of high-order multi-input/multi-output (MIMO) multi-agent systems. Each agent has unknown nonlinear dynamics and is subject to uncertain external disturbances. The agents must follow a reference trajectory. An adaptive distributed controller based on relative information of neighbours of each agent is designed to solve the problem for any undirected connected communication topology. A radial basis function neural network is used to represent the controller's unknown structure. Lyapunov stability analysis is employed to guarantee stability of the overall system. By the theoretical analysis, the closed-loop control system is shown to be uniformly ultimately bounded. Finally, simulations are provided to show effectiveness of the proposed control method against uncertainty and disturbances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.