Abstract
We consider the classical problem of establishing a statistical ranking of a set of $n$ items given a set of inconsistent and incomplete pairwise comparisons between such items. Instantiations of this problem occur in numerous applications in data analysis (e.g., ranking teams in sports data), computer vision, and machine learning. We formulate the above problem of ranking with incomplete noisy information as an instance of the group synchronization problem over the group SO(2) of planar rotations, whose usefulness has been demonstrated in numerous applications in recent years in computer vision and graphics, sensor network localization and structural biology. Its least squares solution can be approximated by either a spectral or a semidefinite programming (SDP) relaxation, followed by a rounding procedure. We perform extensive numerical simulations on both synthetic and real-world data sets, which show that our proposed method compares favorably to other ranking methods from the recent literature. Existing theoretical guarantees on the group synchronization problem imply lower bounds on the largest amount of noise permissible in the data while still achieving an approximate recovery of the ground truth ranking. We propose a similar synchronization-based algorithm for the rank-aggregation problem, which integrates in a globally consistent ranking many pairwise rank-offsets or partial rankings, given by different rating systems on the same set of items, an approach which yields significantly more accurate results than other aggregation methods, including Rank-Centrality , a recent state-of-the-art algorithm. Furthermore, we discuss the problem of semi-supervised ranking when there is available information on the ground truth rank of a subset of players, and propose an algorithm based on SDP which is able to recover the ranking of the remaining players, subject to such hard constraints. Finally, synchronization-based ranking, combined with a spectral technique for the densest subgraph problem, makes it possible to extract partial rankings that other methods are not able to find, in other words, to identify the rank of a small subset of players whose pairwise rank comparisons are less noisy than the rest of the data. We discuss a number of related open questions which we defer for future investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Network Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.