Abstract

In vitro and in vivo experiments were conducted to study the effects of synbiotic supplementation on Salmonella enterica ser. Enteritidis (SE) proliferation, cecal content load, and broiler carcass contamination. Lactobacillus reuteri, Enterococcus faecium, Bifidobacterium animalis, and Pediococcus acidilactici culture supernatants decreased (P < 0.05) the in vitro proliferation of SE at 1:1 supernatant: pathogen dilution. A total of 240 Cobb-500 broiler chicks were randomly allotted to three treatment groups (8 replicates/group with 10 birds/replicate): control (basal diet), antibiotic (Virginiamycin at 20 mg/kg feed), synbiotic (PoultryStar® ME at 0.5 g/kg feed containing L. reuteri, E. faecium, B. animalis, P. acidilactici and a Fructooligosaccharide) from day of hatch. At 21 d of age, all birds in experimental groups were orally inoculated with 250 μl of 1 X 109 CFU SE. Antibiotic supplementation increased (P < 0.05) body weight and feed consumption, compared to the control group. Birds in the synbiotic supplementation had intermediate body weight and feed consumption that were not significantly different from both the control and antibiotic group at 42 d of age in SE infected birds. No significant effects were observed in feed efficiency at 42 d of age among the groups. Antibiotic and synbiotic supplementation decreased (P < 0.05) SE load in cecal contents by 0.90 and 0.85 log units/ g and carcass SE load by 1.4 and 1.5 log units/mL of rinsate compared to the control group at 42 d of age (21 dpi). The relative abundance of IL-10, IL-1, TLR-4, and IFNγ mRNA was decreased (P < 0.05) in the antibiotic and synbiotic supplementation groups compared to the control birds at 42 d of age (21 dpi). It can be concluded that synbiotic supplementation decreased SE proliferation in vitro and decreased SE load in the cecal contents and broiler carcass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call