Abstract
Synaptotagmin I is a synaptic vesicle protein that is thought to act as a Ca2+ sensor in neurotransmitter release. The first C2 domain of synaptotagmin I (C2A domain) contains a bipartite Ca2+-binding motif and interacts in a Ca2+-dependent manner with syntaxin, a central component of the membrane fusion complex. Analysis by nuclear magnetic resonance spectroscopy and site-directed mutagenesis shows that this interaction is mediated by the cooperative action of basic residues surrounding the Ca2+-binding sites of the C2A domain and is driven by a change in the electrostatic potential of the C2A domain induced by Ca2+ binding. A model is proposed whereby synaptotagmin acts as an electrostatic switch in Ca2+-triggered synaptic vesicle exocytosis, promoting a structural rearrangement in the fusion machinery that is effected by its interaction with syntaxin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.