Abstract

A surface-spreading technique for synaptonemal complexes was applied to triploid Allium sphaerocephalon L. (Liliaceae). In early pachytene two of the three axial elements of each set of three homologues are synapsed, the third is intimately aligned with and accompanies them throughout their whole length. The unsynapsed axis is attached to the synaptonemal complex of the other 2 at up to 50 association sites per trivalent. The distribution of these sites within the trivalents is not even; they are under-represented in the proximal regions. From nought to eight switches (pairing partner exchanges), where the accompanying axis joins in synapsis in exchange for one of the two other strands, occur per trivalent. Very often the telomeres of the aligned axes are attached to their synapsed counterparts by dense spherules, which makes this type of association different from the interstitial ones. Frequently the unsynapsed axes show a double structure along short distances. In late pachytene the intercalary associations are abolished, allowing the unsynapsed axes to engage in various types of non-homologous pairing. Since the association sites involve homologous chromosomes and are less abundant in the pericentric regions (which are usually the last to synapse), it is conceivable that similar structures are responsible for the pre-synaptic alignment of homologues and provide the initiation sites for synaptonemal complex formation in diploids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.