Abstract
Synaptobrevin is a vesicle-associated membrane protein (VAMP) that is believed to play a critical role with presynaptic membrane proteins (SNAP-25 and syntaxin) during regulated synaptic vesicle docking and exocytosis of neurotransmitter at the central nervous system. Synaptic contacts between taste cells and nerve processes have been found to exist, but little is known about synaptic vesicle docking and neurotransmitter release at taste cell synapses. Previously we demonstrated that immunoreactivity to SNAP-25 is present in taste cells with synapses. Our present results show that synaptobrevin-2-like immunoreactivity (-LIR) is present in approximately 35% of the taste cells in rat circumvallate taste buds. Synaptobrevin-2-LIR colocalizes with SNAP-25-, serotonin-, and protein gene product 9.5-LIR. Synaptobrevin-2-LIR also colocalizes with immunoreactivity for type III inositol 1,4,5-triphosphate receptor (IP3R3), a taste-signaling molecule in taste cells. All IP3R3-LIR taste cells express synaptobrevin-2-LIR. However, approximately 27% of the synaptobrevin-2-LIR taste cells do not display IP3R3-LIR. We believe, based on ultrastructural and biochemical features, that both type II and type III taste cells display synaptobrevin-2-LIR. All of the synapses that we observed from taste cells onto nerve processes express synaptobrevin-2-LIR, as well as some taste cells without synapses. By using colloidal gold immunoelectron microscopy, we found that synaptobrevin-2-LIR is associated with synaptic vesicles at rat taste cell synapses. The results of this study suggest that soluble NSF attachment receptor (SNARE) machinery may control synaptic vesicle fusion and exocytosis at taste cell synapses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.