Abstract

Synaptobrevin is a membrane-spanning soluble N-ethyl maleimid-sensitive factor (NSF) attachment protein receptor (SNARE) protein of synaptic vesicles that is essential for neurotransmitter release. Various lines of evidence indicate that it exists alternatively as a monomer, as a homodimer, as a heterodimer with synaptophysin, or as a ternary complex with other SNAREs at the various stages of the synaptic vesicle cycle. Homodimerization of synaptobrevin was previously shown by different authors to depend on its single transmembrane segment, and the crucial residues forming the helix-helix interface have been mapped. Since another recent study challenged these results, we reinvestigated this issue. Here, we show that native synaptobrevin can be cross-linked in synaptic vesicle membranes to a homodimer by disulfide bond formation between cysteine residues of the transmembrane segment. Further, we demonstrate that determination of synaptobrevin transmembrane segment interactions in membranes or in detergent solution requires careful control of experimental conditions. Thus, our present results corroborate that homodimerization of synaptobrevin is mediated by its transmembrane segment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.