Abstract

The accumulation of AMPA receptors (AMPARs) at synapses is essential for excitatory synaptic transmission. However, the mechanisms underlying synaptic targeting of AMPARs remain elusive. We have now used a molecular replacement approach on an AMPAR-null background to investigate the targeting mechanisms necessary for regulating AMPAR trafficking in the hippocampus. Although there is an extensive literature on the role of the GluA1 C-tail in AMPAR trafficking, there is no effect of overexpressing the C-tail on basal transmission. Instead, we found that the first intracellular loop domain (Loop1) of GluA1, a previously overlooked region within AMPARs, is critical for receptor targeting to synapses, but not for delivery of receptors to the plasma membrane. We also identified a CaMKII phosphorylation site (S567) in the GluA1 Loop1, which is phosphorylated in vitro and in vivo. Furthermore, we show that S567 is a key residue that regulates Loop1-mediated AMPAR trafficking. Thus, our study reveals a unique mechanism for targeting AMPARs to synapses to mediate synaptic transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.