Abstract

In isolated hippocampal slices, decaying long-term potentiation (LTP) can be stabilized, and converted to late-LTP lasting many hours, by prior or subsequent strong high-frequency tetanization of an independent input to a common population of neurons—a phenomenon known as ‘synaptic tagging and capture’. Here we show that the same phenomenon occurs in the intact rat. Late-LTP can be induced in CA1 during the inhibition of protein synthesis if an independent input is strongly tetanized beforehand. Conversely, declining early-LTP induced by weak tetanization can be converted into lasting late-LTP by subsequent strong tetanization of a separate input. These findings indicate that synaptic tagging and capture is not limited to in vitro preparations; the past and future activity of neurons plays a critical role in determining the persistence of synaptic changes in the living animal, thus providing a bridge between cellular studies of protein-synthesis-dependent synaptic potentiation and behavioural studies of memory persistence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.