Abstract

Homeostatic synaptic scaling entails adjustment of synaptic strength on a cell to prolonged changes of neuronal activity, which is postulated to participate in neuropsychiatric disorders invivo. Here, we find that sustained elevation in ambient GABA levels, by either genetic deletion or pharmacological blockade of GABA transporter-1 (GAT1), leads to synaptic scaling up of corticostriatal pathways, which underlies locomotor hyperactivity. Meanwhile, medium spinyneurons of the dorsal striatum exhibit an aberrant increase in excitatory synaptic transmission and corresponding structural changes in dendritic spines. Mechanistically, GAT1 deficiency dampens the expression and function of metabotropic glutamate receptors (mGluRs) and endocannabinoid (eCB)-dependent long-term depression of excitatory transmission. Conversely, restoring mGluR function in GAT1 deficient mice rescues excitatory transmission. Lastly, pharmacological potentiation of mGluR-eCB signaling or inhibition of homomeric-GluA1 AMPA receptors eliminates locomotor hyperactivity in the GAT1 deficient mice. Together, these results reveal a synaptic scaling mechanism in corticostriatal pathways that regulate locomotor activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call