Abstract

The present study examined synaptic potentials of neurons in inferior colliculus (IC) cortex slice and the roles of GABA and glutamate receptors in generating these potentials. Multipolar (82%) and elongated (18%) cells were observed with intracellular biocytin staining. Electrical stimulation of the IC commissure (CoIC) elicited only inhibitory postsynaptic potentials (IPSPs) (10% of cells), only excitatory postsynaptic potentials (EPSPs) (51%), or both (38%). IPSPs were elicited at lower thresholds and shorter latencies than EPSPs (mean: 1.6±1.2 ms) and IPSPs were observed in all neurons following membrane depolarization. Short-latency EPSPs were blocked by non-NMDA receptor antagonists, and longer-latency EPSPs were blocked by NMDA antagonists. CoIC stimulation evoked short-latency IPSPs (mean: 0.55±0.33 ms) in 48% of neurons, and the IPSPs persisted despite glutamate receptor blockade, which implies monosynaptic inhibitory input. A GABA A antagonist blocked IPSPs and paired pulse inhibition of EPSPs, suggesting GABA A receptor mediation. A GABA B antagonist reduced paired pulse inhibition of IPSPs, suggesting GABA B receptor modulation. Thus, GABA-mediated inhibition plays a critical role in shaping synaptic responses of IC cortex neurons. Normal GABAergic function in IC has been shown to be important in acoustic coding, and reduced efficacy of GABA function in IC neurons is critical in IC pathophysiology in presbycusis, tinnitus and audiogenic seizures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.