Abstract

Evidence is accumulating that synapse reorganization already starts during development, soon after first synapses appear. Although remodeling continues throughout ontogenesis, there are apparently (critical) periods which are characterized by enhanced synaptic reorganization. In certain parts of the peripheral and central nervous system, synapses may undergo remodeling which leads to changes in their transmission efficiency or complete elimination of the synaptic junctions, even in adulthood. Synaptic reorganization includes progressive and regressive changes on branches of dendritic and/or axonal processes that accompany the formation and elimination of synapses. Three modes of elimination are presently known: Physiological cell death of synaptically connected neurons is involved, especially during certain developmental periods, during hormonally induced metamorphosis and in the olfactory bulb. Synaptic disconnection ("stripping") and lysosomal degradation predominantly of presynaptic elements occur under different conditions. In order to undergo plastic changes, neurons seem to respond to exogenous or intrinsic factors such as lesions (partial deafferentation and axotomy), long-lasting changes in neuronal activity (e.g. drug application and sensory deprivation), hormonal influences (e.g. sexual hormones) or learning conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call