Abstract
Recent pharmacological evidence showed that metabotropic glutamate receptors (mGluRs), particularly mGluRs1/5, had a potential role in spinal nociceptive processing. However, previous morphological studies on mGluRs have been limited mainly to their distribution in the spinal cord. In the present study, electron microscopic immunocytochemistry was employed to identify the synaptic relationship of the neurons containing mGluR5, with nociceptive primary afferent and γ-aminobutyric acid-ergic (GABAergic) terminals in the superficial dorsal horn of the spinal cord. Nociceptive C- and A δ-primary afferent terminals selectively labeled with horseradish peroxidase conjugated to wheat-germ agglutinin were in asymmetric synaptic contacts with or in direct apposition to mGluR5 positive dendritic profiles. The double-labeling studies revealed that mGluR5 immunoreactive dendrites also received symmetric synaptic contacts from axon terminals labeled with immunogold particles indicating GABA. The present demonstration of mGluR5 neurons receiving inputs from both nociceptive primary afferents and GABAergic terminals of presumed interneurons further supports the involvement of mGluR5 in the transmission and modulation of nociceptive information in the spinal cord.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.