Abstract

Synaptic plasticity provides the basis for most models of learning, memory and development in neural circuits. To generate realistic results, synapse-specific Hebbian forms of plasticity, such as long-term potentiation and depression, must be augmented by global processes that regulate overall levels of neuronal and network activity. Regulatory processes are often as important as the more intensively studied Hebbian processes in determining the consequences of synaptic plasticity for network function. Recent experimental results suggest several novel mechanisms for regulating levels of activity in conjunction with Hebbian synaptic modification. We review three of them-synaptic scaling, spike-timing dependent plasticity and synaptic redistribution-and discuss their functional implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.