Abstract
Studies of how aging affects brain plasticity have largely focused on old animals. However, deterioration of memory begins well in advance of old age in animals, including humans; the present review is concerned with the possibility that changes in synaptic plasticity, as found in the long-term potentiation (LTP) effect, are responsible for this. Recent results indicate that impairments to LTP are in fact present by early middle age in rats but only in certain dendritic domains. The search for the origins of these early aging effects necessarily involves ongoing analyses of how LTP is induced, expressed, and stabilized. Such work points to the conclusion that cellular mechanisms responsible for LTP are redundant and modulated both positively and negatively by factors released during induction of potentiation. Tests for causes of the localized failure of LTP during early aging suggest that the problem lies in excessive activity of a negative modulator. The view of LTP as having redundant and modulated substrates also suggests a number of approaches for reversing age-related losses. Particular attention will be given to the idea that induction of brain-derived neurotrophic factor, an extremely potent positive modulator, can be used to provide long periods of normal plasticity with very brief pharmacological interventions. The review concludes with a consideration of how the selective, regional deficits in LTP found in early middle age might be related to the global phenomenon of brain aging.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.