Abstract

Synchronized gamma frequency oscillations in neural networks are thought to be important to sensory information processing, and their effects have been intensively studied. Here we describe a mechanism by which the nervous system can readily control gamma oscillation effects, depending selectively on visual stimuli. Using a model neural network simulation, we found that sensory response in the primary visual cortex is significantly modulated by the resonance between “spontaneous” and “stimulus-driven” oscillations. This gamma resonance can be precisely controlled by the synaptic plasticity of thalamocortical connections, and cortical response is regulated differentially according to the resonance condition. The mechanism produces a selective synchronization between the afferent and downstream neural population. Our simulation results explain experimental observations such as stimulus-dependent synchronization between the thalamus and the cortex at different oscillation frequencies. The model generally shows how sensory information can be selectively routed depending on its frequency components.

Highlights

  • Synchronous oscillations [1,2,3] in neural networks are thought to be important to sensory and cognitive functions [4,5]

  • Using a model neural network of the primary visual cortex (V1), we show that (i) the resonance between spontaneous and stimulus-driven oscillations regulates sensory responses and synchrony in a neural population; (ii) the synaptic plasticity of thalamocortical neurons modulates the frequency of spontaneous oscillation in V1; and (iii) this change of spontaneous oscillation regulates gamma resonance, controlling the afferent-downstream synchrony

  • Gamma oscillations in model neural network We performed our simulations with a model cortical network of excitatory (E) and inhibitory (I) neurons (1mm by 1mm, consisting of 3341 neurons) adapted from our previous study [13] (Fig. 1A, top)

Read more

Summary

Introduction

Synchronous oscillations [1,2,3] in neural networks are thought to be important to sensory and cognitive functions [4,5]. Using a model neural network of the primary visual cortex (V1), we show that (i) the resonance between spontaneous and stimulus-driven oscillations regulates sensory responses and synchrony in a neural population; (ii) the synaptic plasticity of thalamocortical neurons modulates the frequency of spontaneous oscillation in V1; and (iii) this change of spontaneous oscillation regulates gamma resonance, controlling the afferent-downstream synchrony. We found that this synaptic modulation can either facilitate or depress the response of the network to stimuli, by changing gamma resonance conditions. Our results suggest that the brain can readily control its synchrony condition for the proper processing of sensory information

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.