Abstract
The crayfish neuropeptide DRNFLRFamide increases transmitter release from synaptic terminals onto muscle cells. As temperature decreases from 20 to 8 degrees C, the size of excitatory junctional potentials (EJPs) decreases, and the peptide becomes more effective at increasing EJP amplitude. The goal of the present study was to determine whether the enhanced effectiveness of the peptide is strictly a temperature-related effect, or whether it is related to the fact that the EJPs are smaller at low temperature, allowing a greater range for EJP amplitude to increase. Decreasing temperature reduced the number of quanta of transmitter released per nerve impulse (assessed by recording synaptic currents) and increased input resistance in muscle fibers. As in earlier work, the ability of the peptide to increase EJP amplitude was enhanced by decreasing temperature. However, the peptide was also more effective at increasing EJP amplitude when transmitter output was lowered by reducing the ratio of calcium to magnesium ions in the bath. Thus the effectiveness of the peptide may be related to the level of output from the synaptic terminals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.