Abstract

Synaptic plasticity is a basic characteristic of synapses and plays an important role in the computation, learning and memory of human brain. Metaplasticity is a higher-order form of synaptic plasticity, which regulates the ability of synapses to generate synaptic plasticity and has a great regulating effect on later learning, memory and coping behaviors. At present, there are rarely reports on the emulation of synaptic metaplasticity in synaptic transistor. In this article, flexible dual-gate indium-zinc-oxide neuromorphic devices on freestanding solid-state proton conducting chitosan electrolyte membrane are designed for metaplasticity emulation. The key synaptic plasticity functions including excitatory postsynaptic current, synaptic paired-pulse response and synaptic pulse train response can be effectively regulated by the priming pulse stimuli. Besides, configurable synaptic depression and synaptic potentiation effect can be realized in such device. These results can expand the potential applications of the multi-terminal electrolyte-gated oxide transistors for flexible dynamic neuromorphic platforms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call