Abstract

Progranulin haploinsufficiency is a common cause of familial frontotemporal dementia (FTD), but the role of progranulin in the brain is poorly understood. To investigate the role of murine progranulin (Grn) in the CNS in vivo, we generated mice targeted at the progranulin locus ( Grn) using a gene-trap vector. Constitutive progranulin knockout mice (GrnKO) show moderate abnormalities in anxiety-related behaviors, social interactions, motor coordination, and novel object recognition at 8 months of age, many of which differ between males and females. Analysis of synaptic transmission in 10–12 month old GrnKO male mice indicates altered synaptic connectivity and impaired synaptic plasticity. Additionally, apical dendrites in pyramidal cells in the CA1 region of the hippocampus in GrnKO males display an altered morphology and have significantly decreased spine density compared to wild-type (WT) mice. The observed changes in behavior, synaptic transmission, and neuronal morphology in GrnKO mice occur prior to neuropathological abnormalities, most of which are apparent at 18 but not at 8 months of age. We conclude that progranulin deficiency leads to reduced synaptic connectivity and impaired plasticity, which may contribute to FTD pathology in human patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.