Abstract
Linear model for synapse temporal dynamics and learning algorithm for synaptic adaptation in spiking neural networks are presented. The proposed linear model substantially simplifies analysis and training of spiking neural networks, meanwhile accurately models facilitation and depression dynamics in synapse. The learning rule is biologically plausible and is capable of simultaneously adjusting both of LTP and STP parameters of individual synapses in a network. To prove efficiency of the system, a small size spiking neural network is trained for generating different spike and bursting patterns of cortical neurons. The simulation results revealed that the linear model of synaptic dynamics along with the proposed STDP based learning algorithm can provide a practical tool for simulating and training very large scale spiking neural circuitry comprising of significant number of synapses and neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.