Abstract
Benzo[a]pyrene (B[a]P) is a ubiquitous neurotoxic pollutant that widely distributes in the natural environment. However, the exact mechanism of B[a]P-induced neurotoxicity has not been well established. As one key synaptic protein, SNAP-25 plays an important role in the regulation of neurotransmitter release, including synaptic dopamine release. In this study, we demonstrated that, after intragastric administration of B[a]P in rats aged postnatal day 5 for 7 weeks, B[a]P significantly increased the level of dopamine and the expression of SNAP-25, dopamine receptor 1 (DRD1) and DRD 3. Moreover, treatment of B[a]P also caused the ultra-structural pathological changes in the cerebral cortex of rats. To further reveal the potential role of SNAP-25 in the regulation of DRDs, we treated the dopaminergic PC-12 cells with 20 μM B[a]P for 24 h. A significant cytotoxicity and apoptosis were observed, and more importantly, we found that SNAP-25, DRD 1 and DRD 3 co-localized in the cells, and down-regulation of SNAP-25 by CRISPR-Cas9 plasmid remarkably reduced the expression of DRD1 and DRD3. Together, our findings suggest that, synaptic dopamine release may be positively regulated by SNAP-25 via its receptors, and thus affecting the neurotoxicity induced by B[a]P.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.