Abstract

The preferred pattern of a neuron is defined here by the set of features detected by its excitatory inputs. It is shown that the Leaky integrate-and-fire (LIF) model of a neuron has a poor selectivity to its preferred pattern. Its response is determined by the total current injected by input spike trains. Thus, a few inputs with a high activity (an incomplete pattern) can elicit the same response as many inputs (a complete pattern) with a weak activity. A theoretical model of depressing synapse with linear recovery is proposed which eliminates this problem. Using this model, the time-averaged current injected in the soma by a spike train becomes independent on its frequency. The neural code thus becomes binary, and the response strength of the target neuron depends only on the number of active inputs. Simulations show that a biological model of strong synaptic depression has effects similar to those of the ideal linear model. The best selectivity is obtained with long somatic decay time constants (>50 ms) and with depression recovery time constants larger or equal to the somatic decay time constant. Thus, by eliminating information carried in the input firing rate, a neuron can improve its pattern recognition performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.