Abstract

Nanoscale memristive devices using tungsten oxide as the switching layer have been fabricated and characterized. The devices show the characteristics of a flux-controlled memristor such that the conductance change is governed by the history of the applied voltage signals, leading to synaptic behaviors including long-term potentiation and depression. The memristive behavior is attributed to the migration of oxygen vacancies upon bias which modulates the interplay between Schottky barrier emission and tunneling at the WOX/electrode interface. A physical model incorporating ion drift and diffusion effects using an internal state variable representing the area of the conductive region has been proposed to explain the observed memristive behaviors. A SPICE model has been further developed that can be directly incorporated into existing circuit simulators. This type of device can be fabricated with low-temperature processes and has potential applications in synaptic computations and as analog circuit components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.