Abstract

Neuronal hyperactivity induced by β-amyloid (Aβ) is an early pathological feature in Alzheimer's disease (AD) and contributes to cognitive decline in AD progression. However, the underlying mechanisms are still unclear. Here, we revealed that Aβ increased the expression level of synaptic adhesion molecule protocadherin-γC5 (Pcdh-γC5) in a Ca2+-dependent manner, associated with aberrant elevation of synapses in both Aβ-treated neurons invitro and the cortex of APP/PS1 mice invivo. By using Pcdhgc5 gene knockout mice, we demonstrated the critical function of Pcdh-γC5 in regulating neuronal synapse formation, synaptic transmission, and cognition. To further investigate the role of Pcdh-γC5 in AD pathogenesis, the aberrantly enhanced expression of Pcdh-γC5 in the brain of APP/PS1 mice was knocked down by shRNA. Downregulation of Pcdh-γC5 efficiently rescued neuronal hyperactivity and impaired cognition in APP/PS1 mice. Our findings revealed the pathophysiological role of Pcdh-γC5 in mediating Aβ-induced neuronal hyperactivity and cognitive deficits in AD and identified a novel mechanism underlying AD pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call