Abstract

Both single and repeated visual stimuli produce waves of activity in the visual cortex of freshwater turtles. Large-scale, biophysically realistic models of the visual cortex capture the basic features of the waves produced by single stimuli. However, these models do not respond to repetitive stimuli due to the presence of a long-lasting hyperpolarization that follows the initial wave. This paper modifies the large-scale model so that it responds to repetitive stimuli by incorporating Hebbian and anti-Hebbian learning rules in synapses in the model. The resulting adaptive model responds to repetitive stimuli with repetitive waves. However, repeated presentation of a stimulus to a restricted region of visual space produces a habituation in the model in the same way it does in the real cortex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.