Abstract

Nanosized extracellular vesicles, known as exosomes, are produced by all cell types in mammalian organisms and have been recently involved in neurodegeneration. In the brain, both glia and neurons give rise to exosomes, which contribute to their intercellular communication. In addition, brain-derived exosomes have a remarkable property to cross the blood-brain-barrier bi-directionally. In this line, exosomes of central origin have been identified in peripheral circulation and already considered as putative blood biomarkers of neurodegenerative diseases, including Alzheimer's disease (AD). Moreover, tentative use of exosomes as vehicle for the clearance of brain-born toxic proteins or, conversely, neuroprotective drug delivery, was also envisaged. However, little is known about the precise role of exosomes in the control and regulation of neuronal functions. Based on the presence of subunits of glutamate receptors in neuron-derived exosomes on one hand, and complement proteins in astrocyte-derived exosomes on the other hand, we hypothesize that exosomes may participate in the control of neuronal excitability via inflammatory-like mechanisms both at the central level and from the periphery. In this review, we will focus on AD and discuss the mechanisms by which exosomes of neuronal, glial, and/or peripheral origin could impact on neuronal excitability either directly or indirectly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call