Abstract

Excitatory post-synaptic potentials (EPSPs) were evoked in lumbar motoneurones of the isolated frog spinal cord by impulses in single ventrolateral tract fibres. In a few cases after recording an EPSP the fibre and the motoneurone involved were both filled with horseradish peroxidase (HRP) and the synaptic connexion between them was studied histologically. Monosynaptic EPSPs produced by direct stimulation of supraspinal (mainly reticulospinal) or unidentified (presumably propriospinal) fibres are mediated via chemical and, less frequently, dual-action synapses. The shape indices of chemical single-fibre EPSPs varied considerably in different connexions being, as a whole, similar to those of chemical components of EPSPs at synapses between primary afferents and motoneurones. Quantal analysis of the single-fibre EPSPs yielded quantal unit amplitude 18-113 microV and mean quantum content ranging from 1.14 to 16.4, the applicability of both Poisson and binomial models to transmitter release was revealed. Descending fibres electrically coupled with lumbar motoneurones were found to generate a depolarizing response to dorsal root stimulation. They were also characterized by a larger depolarization to superfused glutamate. The presence of electrical junctions between descending axons and spinal motoneurones suggests that the depolarization seen in these axons in response to synaptic excitation and glutamate could be the result of passive flow of depolarizing current from motoneurones electrically coupled to them. gamma-aminobutyric acid (GABA) did not produce conspicuous actions in axons forming both chemical and dual-action synapses. Axons injected with HRP have been followed to their site of termination in the lateral motor column. Synaptic boutons and varicosities were found to form contacts predominantly with dendrites of target motoneurones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.