Abstract

Immunofluorescent staining is commonly used to generate images to characterize cytological phenotypes. The manual quantification of DNA double-strand breaks and their repair intermediates during meiosis using image data requires a series of subjective steps, from image selection to the counting of particular events per nucleus. Here we describe "synapsis," a bioconductor package, which includes a set of functions to automate the process of identifying meiotic nuclei and quantifying key double-strand break formation and repair events in a rapid, scalable, and reproducible workflow, and compare it to manual user quantification. The software can be extended for other applications in meiosis research, such as incorporating machine learning approaches to categorize meiotic substages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.