Abstract

Changes in synaptic function require both qualitative and quantitative reorganization of the synaptic components. Ca2+ plays a central role in this process, but the mechanism has not been fully elucidated. Zhang et al report a novel mechanism whereby Ca2+/calmodulin (CaM) regulates the stability of the postsynaptic scaffold. Ca2+/CaM interacts with PSD-95, a core protein in the postsynaptic density (PSD) that supports synaptic signaling and structural components. Ca2+/CaM interferes with the palmitoylation of PSD-95, resulting in the dissociation of PSD-95 from the postsynaptic membrane. This process may explain the reduction of surface glutamate receptor observed during synaptic depression and homeostatic regulation of the synaptic response after prolonged neuronal activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.