Abstract

The juvenile form of neuronal ceroid Lipofuscinosis (JNCL) is the most common form within this group of rare lysosomal storage disorders, causing pediatric neurodegeneration. The genetic disorder, which is caused by recessive mutations affecting the CLN3 gene, features progressive vision loss, cognitive and motor decline and other psychiatric conditions, seizure episodes, leading to premature death. Animal models have traditionally aid the understanding of the disease mechanisms and pathology and are very relevant for biomarker research and therapeutic testing. Nevertheless, there is a need for establishing reliable and predictive human cellular models to study the disease. Since patient material, particularly from children, is scarce and difficult to obtain, we generated an engineered a CLN3-mutant isogenic human induced pluripotent stem cell (hiPSC) line carrying the c.1054C → T pathologic variant, using state of the art CRISPR/Cas9 technology. To prove the suitability of the isogenic pair to model JNCL, we screened for disease-specific phenotypes in non-neuronal two-dimensional cell culture models as well as in cerebral brain organoids. Our data demonstrates that the sole introduction of the pathogenic variant gives rise to classical hallmarks of JNCL in vitro. Additionally, we discovered an alteration of the splicing caused by this particular mutation. Next, we derived cerebral organoids and used them as a neurodevelopmental model to study the particular effects of the CLN3Q352X mutation during brain formation in the disease context. About half of the mutation -carrying cerebral organoids completely failed to develop normally. The other half, which escaped this severe defect were used for the analysis of more subtle alterations. In these escapers, whole-transcriptome analysis demonstrated early disease signatures, affecting pathways related to development, corticogenesis and synapses. Complementary metabolomics analysis confirmed decreased levels of cerebral tissue metabolites, some particularly relevant for synapse formation and neurotransmission, such as gamma-amino butyric acid (GABA). Our data suggests that a mutation in CLN3 severely affects brain development. Furthermore, before disease onset, disease -associated neurodevelopmental changes, particular concerning synapse formation and function, occur.

Highlights

  • Juvenile neuronal ceroid lipofuscinosis (JNCL), commonly referred to as Batten disease or CLN3 disease (OMIM #204200) belongs to the neuronal ceroid lipofuscinoses: a larger group of lysosomal storage disorders which represent a major cause of neurodegeneration in children and young adults [6, 81]

  • The advent of iPS cell technologies allows the development of such models, which are especially relevant in rare disease studies, where the paucity of available patient samples limits research development

  • The generation of isogenic cell lines by means of CRISPR/Cas9-mediated genome editing is of great importance, especially to isolate the effect of the disease-causing mutations from the patient-specific genetic background

Read more

Summary

Introduction

Juvenile neuronal ceroid lipofuscinosis (JNCL), commonly referred to as Batten disease or CLN3 disease (OMIM #204200) belongs to the neuronal ceroid lipofuscinoses: a larger group of lysosomal storage disorders which represent a major cause of neurodegeneration in children and young adults [6, 81]. A few studies were able to show to some extent developmental abnormalities in newborn mice [58] or zebra fish embryos and larvae [78]. They might not recapitulate the features of the human disease

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.