Abstract

The Mesoproterozoic Aggeneys-Gamsberg ore district, South Africa, is one of the world´s largest sulfidic base metal concentrations and well-known as a prime example of Broken Hill-type base metal deposits, traditionally interpreted as metamorphosed SEDEX deposits. Within this district, the Gamsberg deposit stands out for its huge size and strongly Zn-dominated ore ( >14 Mt contained Zn). New electron microprobe analyses and element abundance maps of sulfides and silicates point to fluid-driven sulfidation during retrograde metamorphism. Differences in the chemistry of sulfide inclusions within zoned garnet grains reflect different degrees of interaction of sulfides with high metal/sulfur-ratio with a sulfur-rich metamorphic fluid. Independent evidence of sulfidation during retrograde metamorphism comes from graphic-textured sulfide aggregates that previously have been interpreted as quenched sulfidic melts, replacement of pyrrhotite by pyrite along micro-fractures, and sulfides in phyllic alteration zones. Limited availability of fluid under retrograde conditions caused locally different degrees of segregation of Fe-rich sphalerite into Zn-rich sphalerite and pyrite, and thus considerable heterogeneity in sphalerite chemistry. The invoked sulfur-rich metamorphic fluids would have been able to sulfidize base metal-rich zones in the whole deposit and thus camouflage a potential pre-metamorphic oxidation. These findings support the recently established hypothesis of a pre-Klondikean weathering-induced oxidation event and challenge the traditional explanation of Broken Hill-type deposits as merely metamorphosed SEDEX deposits. Instead, we suggest that the massive sulfide deposits experienced a complex history, starting with initial SEDEX-type mineralization, followed by near-surface oxidation with spatial metal separation, and then sulfidation of this oxidized ore during medium- to high-grade metamorphism.

Highlights

  • The world-class Gamsberg Zn deposit is part of the Aggeneys-Gamsberg ore district, located c. 700 km north of Cape Town (South Africa)

  • All deposits of the Aggeneys-Gamsberg ore district have been classified as Broken Hill-type (e.g. Spry and Teale 2021), generally thought to represent sedimentary exhalative (SEDEX) deposits that experienced amphibolite- to granulite-facies metamorphism (Sangster 2020 and references therein)

  • A total of ninetysix analyses were conducted on various areas of seventeen garnet grains, which showed a distinct zonation in their back-scatter electron images with a patchy/streaky rim with large sulfide inclusions (> 25 μm)

Read more

Summary

Introduction

The world-class Gamsberg Zn deposit is part of the Aggeneys-Gamsberg ore district, located c. 700 km north of Cape Town (South Africa). The world-class Gamsberg Zn deposit is part of the Aggeneys-Gamsberg ore district, located c. With resources of at least 214 Mt at 6.73% Zn, 0.5% Pb and 5 g/t Ag, Gamsberg is the most Zn-rich deposit within the ore district (Rozendaal et al 2017) and the end member of a pronounced spatial metal zonation with Cu-Pb-rich deposits in the west (Broken Hill, Black Mountain) and the huge Gamsberg Zn deposit in the east. All deposits of the Aggeneys-Gamsberg ore district have been classified as Broken Hill-type A high mineralogical variability, the pronounced metal zonation and significant levels of base metals in non-sulfides (e.g. gahnite) cannot be explained by this genetic model. 1 3 Vol.:(0123456789) N Black Mountain Big Syncline Gamsberg 28° S Broken Hill

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call