Abstract

Abstract In order to investigate partial melting and melt evolution during exhumation of deeply subducted continental crust, we carried out a combined study on layered leucosomes and pegmatitic veins from the Weihai–Rongcheng migmatites in the Sulu ultra-high pressure (UHP) metamorphic terrane, eastern China. The leucosomes are millimetric to centimetric in thickness and mainly consists of K-feldspar + quartz + plagioclase. The pegmatitic veins emplace along the compositional layers or crosscut them and are mainly composed of K-feldspar + quartz. CL images show that most zircon grains of the leucosomes have a core–rim zoning structure, whereas zircons of the pegmatitic veins are mostly new growth grains with rarely preserved relict domains. The inherited zircon domains (ca. 750 Ma) are of a magmatic origin with zircon eHf(t) values between − 5.7 and 5.3 (mean = − 0.8 ± 1.5), suggesting that the protolith rock is a Mid-Neoproterozoic juvenile crust. The zircon overgrowth rims (223 ± 3 Ma) of the leucosomes and the new zircon grains (217 ± 2 Ma) of the pegmatitic veins formed in equilibrium with melt and are similar to magmatic zircons in terms of their CL images and trace element compositions, e.g., heavy-enriched REE patterns (i.e., very low (Gd/Lu)N ratios) with positive Ce and variably negative Eu anomalies, high Y contents and low Hf/Y ratios. Compared with the inherited protolith zircon domains, the Triassic zircon domains of the leucosomes and the pegmatitic veins have obviously high U but low Th contents, resulting in very low Th/U ratios (

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call