Abstract

According to Wood's model, morphometric parameters such as slope angle can provide valuable information about the age of conical volcanic edifices such as scoria cones assuming that their initial slopes range from 30° to 33°, measured manually on topographic maps, and assuming that their inner architectures are homogenous. This study examines the morphometric variability of nine young (a few thousand years old) small-volume scoria cones from Tenerife, Canary Islands, using high-resolution digital elevation models in order to assess their slope angle variability. Because of the young age and minimal development of gullies on the flanks, their morphometric variability can be interpreted as the result of syn-eruptive processes including: (1) pre-eruptive surface inclination, (2) vent migration and lava outflow with associated crater breaching and (3) diversity of pyroclastic rocks accumulated in the flanks of these volcanic edifices. Results show that slope angles for flank sectors differ by up to 12° among the studied volcanoes, which formed over the same period of time; this range greatly exceeds the 2–3° indicated by Wood. The greater than expected original slope range suggests that use of morphometric data in terms of morphometry-based relative dating and detection of erosional processes and settings must be done with great care (or detailed knowledge about absolute ages and eruption history), especially in field-scale morphometric investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call