Abstract
Background and ObjectiveFatty Liver Disease (FLD) - a disease caused by deposition of fat in liver cells, is predecessor to terminal diseases such as liver cancer. The machine learning (ML) techniques applied for FLD detection and risk stratification using ultrasound (US) have limitations in computing tissue characterization features, thereby limiting the accuracy. MethodsUnder the class of Symtosis for FLD detection and risk stratification, this study presents a Deep Learning (DL)-based paradigm that computes nearly seven million weights per image when passed through a 22 layered neural network during the cross-validation (training and testing) paradigm. The DL architecture consists of cascaded layers of operations such as: convolution, pooling, rectified linear unit, dropout and a special block called inception model that provides speed and efficiency. All data analysis is performed in optimized tissue region, obtained by removing background information. We benchmark the DL system against the conventional ML protocols: support vector machine (SVM) and extreme learning machine (ELM). ResultsThe liver US data consists of 63 patients (27 normal/36 abnormal). Using the K10 cross-validation protocol (90% training and 10% testing), the detection and risk stratification accuracies are: 82%, 92% and 100% for SVM, ELM and DL systems, respectively. The corresponding area under the curve is: 0.79, 0.92 and 1.0, respectively. We further validate our DL system using two class biometric facial data that yields an accuracy of 99%. ConclusionDL system shows a superior performance for liver detection and risk stratification compared to conventional machine learning systems: SVM and ELM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.