Abstract
BackgroundDiagnostic testing plays a critical role in the global COVID-19 response. Polymerase chain reaction (PCR) tests are highly accurate, but in resource-limited settings, limited capacity has led to testing delays; whereas lateral flow assays (LFAs) offer opportunities for rapid and affordable testing. We examined the potential epidemiological impact of different strategies for LFA deployment. MethodsWe developed a deterministic compartmental model of SARS-CoV-2 transmission, parameterised to resemble a large Indian city. We assumed that PCR would be used to test symptomatic individuals presenting to outpatient settings for care. We examined how the second epidemic wave in India could have been mitigated by LFA deployment in its early stages by comparing two strategies: (i) community-based screening, using LFAs to test a proportion of the population, irrespective of symptoms (in addition to symptom-driven PCR), and (ii) symptom-driven outpatient testing, using LFAs to replace PCR. ResultsModel projections suggest that a stock of 25 million LFAs, used over a 600-day period in a city of 20 million people, would reduce the cumulative symptomatic incidence of COVID-19 by 0.44% if used for community-based screening, and by 13% if used to test symptomatic outpatients, relative to a no-LFA, PCR-only scenario. Sensitivity analysis suggests that outpatient testing would be more efficient in reducing transmission than community-based screening, when at least 5% of people with symptomatic COVID-19 seek care, and at least 10% of SARS-CoV-2 infections develop symptoms. Under both strategies, however, 2% of the population would be unnecessarily isolated. InterpretationIn this emblematic setting, LFAs would reduce transmission most efficiently when used to test symptomatic individuals in outpatient settings. To avoid large numbers of unnecessary isolations, mass testing with LFAs should be considered as a screening tool, with follow-up confirmation. Future work should address strategies for targeted community-based LFA testing, such as contact tracing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.