Abstract

The structure of schizophrenia symptoms has a substantial impact on the development of pharmacological and psychosocial interventions. Typically, reflective latent variable models (eg, confirmatory factor analysis) or formative latent variable models (eg, principal component analysis) have been used to examine the structure of schizophrenia symptoms. More recently, network analysis is appearing as a method to examine symptom structure. However, latent variable modeling and network analysis results can lead to different inferences about the nature of symptoms. Given the critical role of correctly identifying symptom structure in schizophrenia treatment and research, we present an introduction to latent variable modeling and network analysis, along with their distinctions and implications for examining the structure of schizophrenia symptoms. We also provide a simulation demonstration highlighting the statistical equivalence between these models and the subsequent importance of an a priori rationale that should help guide model selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.