Abstract

We present a family of symplectic splitting methods especially tailored to solve numerically the time-dependent Schrodinger equation. When discretized in time, this equation can be recast in the form of a classical Hamiltonian system with a Hamiltonian function corresponding to a generalized high-dimensional separable harmonic oscillator. The structure of the system allows us to build highly efficient symplectic integrators at any order. The new methods are accurate, easy to implement, and very stable in comparison with other standard symplectic integrators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.