Abstract
We discuss a particular class of rational Gorenstein singularities, which we call symplectic. A normal variety V has symplectic singularities if its smooth part carries a closed symplectic 2-form whose pull-back in any resolution X --> V extends to a holomorphic 2-form on X . Our main result is the classification of isolated symplectic singularities with smooth projective tangent cone. They are in one-to-one correspondence with simple complex Lie algebras: to a Lie algebra g corresponds the singularity at 0 of the closure of the minimal (nonzero) nilpotent adjoint orbit in g .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.